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In many problems in elasticity, the numerical evaluation of solutions requires that the
behavior of the components in the stress-strain state be known in the neighborhood of
singular points or lines on the surface of the body under consideration, This permits
the approximation of the solution in the most convenient manner and the construction
of an approximate process for its determination, The papers of Fufaev [1 and 2], and
Kondrat'ev [3 and 4] are devoted to the solution of the Laplace, Poisson and elliptic
equations in the regions having nonsmooth boundaries, Williams [5 and 6] and Ufliand
[7] have established the character of stress singularities at the corner of a plane wedge
for various boundary conditions on its edges, The aim of the present paper is to obtain
the singularities of the state of stress in a nonhomogeneous plate in the neighborhood of
edge points, i, e, points of intersection of the side surface with the face of a plate, The
method used permits the determination of the character of the singularities without
directly solving the boundary problem,

1, For greater generality, assume that the side surface [ is at an arbitrary angle
Qz (0 <Qp S2TT) to the face I, The loading conditions on these surfaces in the
neighborhood of the edge will be formulated
below, In addition, let us assume that the
plate is nonhomogeneous, and consists of two
bodies which are rigidly joined along the
cylindrical surface I3, which passes through
the plate edge L, The generator of this sur-
face is inclined at an angle Q; (0 <Qy = 2T)
to the plate surface (Fig, 1),

Let Gl and /7; be, respectively, the shear
modulus and Poisson's ratio for the material
of the first body, bounded by the surfaces [’
and [, while G5 and 7y are the correspond-

Fig, 1 ing values for the second body, bounded by the
surfaces [] and [,

Consider a sufficiently small neighborhood of point 4 on edge L . Introduce an
orthogonal curvilinear coordinate system P, ¢, 8 (Fig, 1),
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Here MY is a perpendicular to the surface I” from some point ¥ Iving inside the
neighborhood under investigation: /7 is the normal to the edge L , lying on that surface,
The curvilinear coordinates of // are defined in the following manner: 0 is the distance
from M to P ; ¢ is the angle between /P and PM ,and s is the distance from 4 to
measured along the curve L (the arrows on the sketch indicate the positive coordinate
directions),

Let us write the equilibrium equations in this coordinate system
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In Formulas (1,1) to (1, 3), u,, u, and y, are the components of the displacement
vector, taken in the directions of the introduced coordinates, while R is the radius of

curvature [, at peint °,
Introduce a change of variables into (1,1) to (1. 3)

p=e¢t (1.4)

Equation (1, 1) takes the form
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Noting that the neighborhood of 4 is sufficiently small so that terms containing the
factor € ° may be neglected in comparison with the rest, we obtain

2(m—1) 0%u, 3m — 4 Ou, m 0%, O,
—[ g T M2 39 " m—2otog T gt =0 (1.9

m—2 a2
Similar transformations of (1, 2) and (1, 3) yield
2 (m— 1) a2uzp m 3zup 3m — 4 aup azuq’
m—2 6(p2-—m—26t6(p"‘u¢+m—2 2 T o =0 (1.6)
62us 6211'8
ogt + 5z = 0 (1.7)

Setting in (1, 5) to (1,7) m = my, u, = uy,, U, = u;, and uy = uis, we obtain, for
1=1,2, a ystem of equilibrium equations for the first and second body, respectively,
We seek solutions of the form
= ¢~ B; (p), uz, =et Cy(q) (i =1,2) (1.8)
The displacements are assumed to be bounded in the neighborhood of the edge, so that
k20 and A, 20, Substituting (1, 8) into equations of equilibrium, we obtain a system
of differential equations for the determination of the functions 4 (), By (%) and Cy ()

= e 4;(9),

ui(’

oo, mik—3mi 44 o 2(m —1) .
AT+ B e M=) A=0 (1.9)

2(my —1) _  mgk+3my—4 _
m—2 B Ty AT+ (R — 1B =0 (i=1,2)  (1.10)
Ci" + k2C; =0 (A.11)

The general solutions of (1, 9),(1,10) and (1, 11) are easily found, For %# 0 and ), #o0,
they are given by the following relations :
A; (@) = Cyy (mik — 3my 3= 4)cos (k — 1) ¢ +-
+Cia (myk — 3my 4 4) sin (k — 1) @ - Cy3c08 (k b 1) 9 4 Cyysin (k 4 1 o (1.12)
By(g) = —Cyy (mik + 3my — 4) sin (k — 1) ¢ +
+ Ciz (mik - 3my — 4) cos (k — 1)@ — Cigsin (k 4 1)@ 4 Cyycos (k- 1) @ (1.13)

C; (9) = Dy sin kyp 4 D;,cos ki @ (i =1,2) (1.14)
For A= 0, the general solutions of (1, 9) and (1, 10) are represented in the form
Ay@) = (En® + Eig) cos@ + (Egs@ + Eyy) sing (1.15)

m; m; . .
B () = ( E 9+ E;— 3ms t 4 E“) cos @ — (Eilcp +E;+ 37?1_1-‘7; Em) sin @ (i=1,2)
(1.16)
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For /%, = 0, the general solution of (1, 11) is given by

Ci (@) = Fu? -+ Fiz (i=1,2) (1.17)
The constants Oi Ir ‘DiJ , EiJ and #j; are determined from the boundary conditions,
which will now be formulated,

2, Let the surfaces [ and [} in the neighborhood of point 4 under consideration be
free of stresses, The governing equations on the contact surface [} are the equations for
the components of a stress-strain state for two media, Since [, [J and [3 are coordinate
surfaces corresponding to 0= 0, ®©=_Q; and ¢® =Qg, , respectively, the boundary condi-

tions are . —
Slo=Tioo = Tise =0 (@ =0),  Gpy = Typq = Tose = (P =a) (21

%10 = S20r  Tico = Taopr Tise = Tases o ™= Hap, Ujg ==lUyg, U5 =1ty (P =0)

The indicated stresses, in terms of displacements in the above coordinate system, are
given by

26; [mi—1 94, R\ Ouy
%= m, —2 [ p o + (mi TR=pcosgl p + dp + 2.2)
R du;s sin @ 1
+r= peos@ 95 T R—pcosQ ur’wJ
1 Buy,  Ouy, Uip
R =

R Ouiy 1 duy sin@ (i=1,2)
= Q| —————— e 23 -y
o= Y| 'R "pcos@ ds ' p 9p  R—pcosq 18

Introducing the changes of variable from (1, 4) into (2, 2) to (2, 4) and taking into
account the smallness of the neighborhood, we obtain the following relations:

26; duig iy
1o = Py — 5 et l:(mi — 1) T + (my— 1) uy,— 0; (2.5)
Ouy, Buyy, dus (i=1,2)
Tipp = Gif' [ 3p — At — uiJ , Tigp = Gie' —aq’f (2.6)

Upon satisfying boundary conditions (2, 1), we obtain a system of homogeneous equa-
tions in Cyy and Dy Cumy (k +1) +Cia =0, Cpamy (k—1) +Cy=0 (2.7)

Cyyma (k 4 1) cos (k — 1) &y - Cogmy (k 4 1) sin (k — 1) &y 4 Cogcos (k + 1) &g
4+ Cyysin(k - 1} o, = 0
—Cymy (k — 1)sin (k — 1) dly + Cogmy (k — 1) g0s (k — 1) @y — Cogsin (£ + 1) ay 4
—+ Cyq cOs (h - 1)y = 0

Cy (mik — 3my + 4) cos (k — 1) ay ~} Cyy (myh — 3my 4 4) sin (K — 1) oy ¢
4 Cyac08 (k 4 1)y +Cyysin (k- 1) &y — Cyy (mok — 3my - 4) cos (k — 1) oy —
—Cys (mgk — 3my <+ 4) sin (k — 1) &, — Cyg €08 (k + 1)@y — Cagsin (k ¢ 1)@y = 0

—Cp (my k 4 3my — 4) sin (kK — 1) oy + Cyy (myk + 3my — 4) cos (b — 1)ay —
—Cyysin (k 4 1)y 4 Cyyc08 (k1) oy + Cygy (mok - 3my — 4)sin (A — 1) a; —
—Cyy (mgk +3my — 4) cos (K — 1) oy -+ Cgy sin (k + 1)y — Cyycos (b + 1) o; =0

Gy [Cymy (k + 1) cos (k — 1) oty -} Cyomy (k 4 1) sin (k — 1) @ 4 Cyycos (k4 1yay +
A Cyasin (b 1) ay) — Gy [Coymy (k + 1) cos (K — 1) oy Comng (b + 1) sin (k—1) a; 4
4 Cyg cos (h -F Doy ++ Cogsin (b + Doy] = 0 (2.8)
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Gy [— Cymy (B- Yy sin (B — Doy + Coang (h — 1) cos (b — D a; — Cyy sin (k 4 Do+
4 Cygc08 (k- Dayd — Gy | —Copms (h — Dsin (b — 1) &y +
+ Cyomg (A — 1) cos] (b — D a; — Cay sin (b + 1) ay - Coy cos (k + Doy ] =0
Dy = 0, Dy cos kyoty — Do sin bty = 0 (2.9
Dy sin kyay - Dyg €08 kyoty — Doy sin kyoy «— Dy, cos byay = 0
G; (Dyy cos kyoy — Dy sin ko) — Gy (Dyy cos kty — Dy, sin ko) = 0

Setting the determinant of the system (2, 8) and (2, 9) equal to zero, we obtain, after
some manipulation, the characteristic equations in /% and A

my — 1\2 my — 1\2
G:? (-—“—-——) [sin2 koy — k?sin?a;] + G2 (*——) [sin? & (az — o3} — k?sin? (o — o)} +
g my
Go— Gi\2_ | . . .
-+ (T) [sin? koy — k2 sin? ay] [sin? & (ae— a3 )—4A? sin? (ay—on) ]+
—1 my—1
+ 26G,G, mlml mm — [sin k (ot — aty) sin kay cos kay — A2 sin oy sin (o: — @) €os a.] +
s —1 2.10
+ G (G; — GY) T—n-%— [sin? ko, — A% sin? a,} sin? k (@ — oy} 4 ( )
— 1
+ G2 (G — ) m‘ml [sin2 k (s — ay) — A? sin? (@ — ay)] sin? ka; = 0 (k> 0)

G, cos ko sin &y (@ — ;) + G, sink@t; cos ky (@ — @y) = 0 (ky > 0) (2.11y

Now consider the case of = 0, Upon satisfying the boundary conditions (2, 1), we
obtain a system of equations in £y from which it follows that Fyy =F£3 = 0, B =F1 5
Eoq = B4 , with Fhp and B4 being independent arbitrary constants, The components
of the displacement vector are given by

Uy, = Uy, = Lyp €0sQ 4 Iy, sing, Uy, == 1y, = g cos@ — Lyysing (2.12)

It is easily seen that the expressions in (2, 12) represent rigid body displacements,

Similarly, for A4; = 0, we have F3 = 0, fos = Fi5 , and the solution Uy, =Ug = Fia
also represents a rigid body displacement,

Thus, the cases A= 0 and %; = 0 are of no interest in the problem at hand, We will
now investigate the solutions corresponding to positive values of £ and A , defined by
the realtions (2,10) and (2,11), '

In the most prevalent case of contact between two bodies, for g = 477 and Q= 5—TT y
investigation of the singularity of the solution in the neighborhood of edge A5 (Fig, 2)
yields the characteristic equations in A and 43 ,

{1y~ 1\2/ ka /ml———~1>2 L
- in2 — — L2 i 2 — g e / z
1 \ o, ) ‘\sm D) y ) - G \ "o sin? kv -
tGo — Gy\2 krn i ) , my — tm, —1
-+ ‘\ — 1) {s%n‘l 7 — k‘~‘> SIn? At 4 2616y = o
ka 3ka m,—1; _kn AU
X gin kv sin 5= cos -5~ - G1(G:— G1) — 7 {sxw H l:—}' sin? ke -

R ket
1 G (G — G 7"”21 sint kasin? - = 0 (2.13)
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Gacos k.i—,xsiu k7t 4 Gy sin b,—'(- cos k= {2.14)
Let us now examine the case of a homogeneous plate the side surface of which makes
an angle @ with the plane of the face, This case may be obtained by setting Go=G =G,
Mg =My =M and Ay =Q in the relations previously derived, The characteristic equa~
tions take the form
sin? ko — k% sin’e = Q (k>0 (2.15)
sin ko = 0 (k> 0) (2.16)
Whereupon, Equations (2, 8) and (2, 9) yield
Cij = Cy;j, Dy; = Dy;
Setting
Cyj= Cpj= C;. Dy = Dy;=Dj

we obtain a system of equations for the constants (' f and 7 ]

Cy= —~Cym (k 4 1), Cy= —Com (k — 1) 2.17)

Cy (k 4 1) sin ke sino 4= C, (sin ko cosa — k sin a cos ka) = 0

Fig. 2 Cy (ksina cos ko - sin kot cosa) - C, (b — 1) sinkasina = 0
D; =0, Dgsin ko = 0 (2.18)

It is easily found by taking note of (2, 15) that, for all fo T in the interval (0, 2TT),
the rank of the matrix of system (2, 17) is three, while for 0 = 77 and O = 277 the matrix
is of rank 2, Hence, the case O =TT and Q = 27 will be examined separately, For
0 <Q <TT and TT <O < 277, we have (2.19)
Cy (k — 1) = —C, (keot ka - cota), Cy= —Cym (k + 1), Cy= Cym (k cot kot ¢ cot o}

Then we obtain for the components of the displacement vector, when ¢ < <77 and
< <2n

u, = Cpkl(mk — 3m 4 4) (k — 1) cos{k — 1)@ — (mk — 3m -1 4) (k cot kot
+ cot @) sin(k — 1)@ —m (A2 — 1) cos(k + 1) ¢
4+ m(k—1) (k cot kot -+ cot @) sin (k - 1) @] (2.20)
uy = Cp¥ [ —(mk + 3m — 4)(k — 1)sin(k — 1)@ — (mk + 3m — &)(keot ko -
4 et a)cos(k — 1)@ 4 m (k¥ —1)sin (k +1) ¢ +
4+ m(k— 1) (k cot ka4 cot @) cos (k 4 1) @] (2.21)
u, = Dyp¥1 cos k1@ (2.22)
Here % and %, are determined from relations (2, 15) and (2, 16), respectively,
If @ =TT, the characteristic equations for % and 4, are
sin kn = 0, sin ke = 0 (2.23)
i.e, % and A, are positive integers, Clearly, in that case the stresses in the neighbor~
hood of the edge are finite, as expected .
For Ct = 27T, the characteristic equation for 4 and 7{1 are
sin 2k = 0, sin2kz = 0 (2.24)

Evidently, in this case, as the plate edge is approached, the stresses increase without
bounds, except for £= % or /1 = . The displacement vector components are here
given by

u, =YV {— Cil(5m — 8) cos Y/, @ + 3m cos ¥ E] +
+ Cy [(5m — 8) sin'/y ¢ + m sin ¥, 9]}
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Uy, =1/, Vo {C,[(Tm — 8) sin/, ¢ -- 3 m sin 3, 9] +-
+ Cqy [(Tm — 8)cos Y, ¢ + m cos¥: @]}
ug = D, Vp cos Y9 (2.25)
Thus, when the surfaces I” and I‘z are unloaded in the neighborhood of the edge, the
singularities are of the form pk~! or "1, where & and %, are obtained from (2, 10)
and (2, 11),

3, Now let the surfaces I and I3 be rigidly clamped in the neighborhood under

consideration, i, e,

u,=u, =u,=0 (p=0), u,=u, =u, =0 (P =0a,) 3.1

S0 =% Tio=Tper Tie =Tuser Yo T e Mo T Y s T U (¢ =)
Satisfying these conditions for £ > 0 and %4, > 0 in a manner similar to the above,
we obtain a system of homogeneous equations in ('y j and Dy 3+ Setting the determinants

of these systems equal to zero, we obtain the characteristic equations for % and 2y
1\2 mk 2
68 (g ) (st b= (g e | +

9

+ 6 <3m1 14)2 [sin2 k(ag—ay) — (‘%r‘:—“_li_zf sin? (g —~ al)] +

G.—C mk \2 k)
(B st () ine ] s e ) — ()

1 k \2
X sin? (ag — al)]— Gy (G2 — G1) 377;?2[““2 koy — (m—l__[i) sin? al] sin® k (ay — ay) —

3my

—1 k \2
— G (G — Gy 3'"—‘—— [sin2 k(o — o) — (d—”:’:i_—4> sin? (a3 — al)] sin? kag + (3.2)

—1 my—1
+ 26,6, 3m1 — 5"32 7 [Sin kay sin k (@ — o) cos kot —

my
3m1——-4mk sin a, sin (a 2—a1)cosaz]=0 (k>0)
Gy cos ka, sin k) (@3 — o)) 4 Gy sin ko, cosk, (o — o) = 0 (k, >0) (3.3)

If either of the quantities % or %4; is taken equal to zero, then the corresponding dis-
placements become zero, as expected, Hence, hereinafter we will assume % and h‘l
to be positive,

For o, = 1/, m, ay = 3/, n (Fig, 2), the characteristic equations are

Gz(&’i)z .2131_( mk \2 g (m—132
¥ \3my —4/) |51 2 3m1—4) + Gy (3m1—4) sin? kn 4

Gz —_ Gl 2 R ko myk 27 my —1 kx
-+ ( 5 ) [Sln2 -5 (m) :’sm2 kn — G, (G — Gy) gh l:sm’ 5 =

mik \27 | my—1 kn
— (m) ] sin? km — Gy (G1— Gs) '3”:1—_4 sin? kx sin? a5 +
—1 my—1 1 kn 3kn
4 2G1G, 3m % 3m, —4 sin —5- 5 sin ke cos 5 = (> 0) (3.4)
ko, .k
Gy cos 5~ sin kyt -+ G, sin ~5 €08 kyt =0 (k1> 0) (3.5)

If the plate material is homogeneous, we have the following equations in %4 and % :
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k 2 o
sin%a—-(g;nij) sinfa =0 (k>w) (3.6)
sin ko = 0 (ks > 0) (3.7)

The equations for C'J and .DJ , for 0 < <77 and T < < 27T, become
Cy= — (mk — 3m 4 4) C,, Cy,= —(mhk +3m — 4)C, (3.8)
Cy (mk — 3m + 4) — Cy [mk cot koo - (3m — 4) cot ] = O (3.9)
Cy (mk zot ko — (3m — 4) cot a] - Cy (mk -+ 3m — 4) =0 (3.10)
D, = 0, Dy sin kja = 0 (3.11)

It is not difficult to show that if
m nﬂ.

(n=1,2,3) (3.12)

E=m =3 2"
then both coefficients in Equation (3, 10) vanish for A= ~(37 ~ 4)/7 , which turns out
to be a root of Equation (3, 6) in this case, "Thé coefficients in (3. 9) are nonzero for
K =—(3m—~4)/m , but if o ‘

a = Z‘z;l‘:{) 5 (n=1,2,3,...,7), (3.13)
both become zero for % = (3m—4)/m,
Hence, when Q. satisfies condition (3, 12), the following formulas must be used for
determining u, and u,, when &= —(37—4)/m:

3am—4

- 3m —4 A(m — 1) . 4(m—1)
wg=—Co " [(“"” o ) cos WD g 2sin M g
3m—4 2(m-—2
—<ma+ cot %*a) cosi—’;n———)cp] (3.14)

im—4

utp:Cp " (eotd+cm

—4 2 —_2
3m a) SmJ'qu,

m m

For all values of /4 different from ~(37~4)/7 but satisfying (3. 12) as well as for

arbitrary /£ not satisfying (3, 12), the displacements u, and u, are given by

u, = CpF{(mk — 3m + 4) (mk + 3m — 4) cos (k — 1)p — (mk — 3m + 4) [mkovha —
~— (Bm — 4) cota]sin (k — 1)@ — (mk — 3m - 4) (mk 4 3m — 4) cos (k + 1)@ +
+ (mk 4 3m — 4) [mk cot kot — (3m — 4) tcora] sin (k -+ 1)@} (3.15)
u, = C.p"’ {— (mk 4 3m — 4)% sin (k — 1) @ — (mk 4 3m — 4) [mk cot’ha —
— (3m — &) covet] cos(k — 1)@ -+ (mk — 3m + 4) (mk + 3m — &) sin (k - 1)@ 4+
+ (mk + 3m — 4){mk cot koo — (3m — 4) cot @] cos (k + 1) ¢}
The displacement &, for arbitrary 0 <Q <TT and T <@ < 277 is given by
u, = DpFtsin ko (3.16)
If & =TT, the stresses in the neighborhood of the edge are finite for this problem also,
as one might expect,
For @ = 21T, the characteristic equations for X and 4 are

sin 2kn = 0 (k> 0), sin2kyn = 0 (ky > 0) (3.17)
As in the preceding case, the associated stresses increase without bounds as the edge
of the plate is approached, except for #=} or 3 = %, The expressions for the dis-

placements in this case are
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Uy = 1, VP {— Cy 5 — 8) (cos Y, § — cos ¥, ¢) + Cy [(5n — 8) sin Yy @ — 5
: (3.18)

— {Tm — 8) sin ¥, ¢}
U, =1y Vo ¢, W7 m — 8) sin Yo — (5m — 8) sin ¥, ¢] -
L Cy (T — B) (cos 1op — cos ¥,y @)}, ug == D, VBsin e @
Thus, in the case of rigidly clamped surfaces I"and I'5, the stresses in the neighbor-
hood of the edge have singularities of the form ph-1 and pfl where /& and %, are
given by relations (3, 2) and (3, 3), respectively,

4., We now consider two more sets of boundary conditions, In the first case,- the
surface [ is free while the surface I is rigidly clamped, In the second case, the surface
L. o is free while the surface Tis clamped, Proceeding as before, we obtain, in the first
case, the characteristic equations for positive % and k1

my — 1\23my — 4 [ A{my — 1) — m 2k sin2 oy p
GAC I N2 ke — — .1
e ( my ) 1_”“ kay ney (g — 4) } (4
my— 1\23my — 41 ' A (my — 112 — mu2h? sin? (oy — af)]
M2 ( iy > na Asln- k (dp — o) — tiy (3mey — 4) +
my— 3my —4& . .
“+ (Gy— Gy) Fraa— [sin? kay — A2 sin? oy ] sin? k (ag — o) +
) my— 1 {3my — 5327 mak \2 .
{6y — Gy) Ty ( e \) Lsmz k{ag — o) — (mﬂ) sin? {0z — o) | sin? kay +
Gy — Go)? 13my — 4\ ) ) mek \2
+ ( 146\,&) ( ,?h ) [sin? koy — A? sin? a;][smz k(o — ay) M(Wiﬁé) sin? (ota —,—.ul)]—-
my— 1\2 fma — 1\2 my—tmg—1¢(
~— 4G, - —2 e 2 sj St — -
4Gy ( "y ) ( - ) Gy o e \lk Sin oy sin (0 — 01} COS Qg
Jmg —4 . Gy | .
- N sinka;sink{ds — o} 2 G sin koty sin k{dp — &) — cos k(20 — o}t =0

Gy cos koty €0s ky (0t — @) — Gy sin ke, sin &y (@ —ay) = 0 (4.2)

The characteristic equations for the second case may be obtained from Equations (4, 1)
and (4. 2) by interchanging Qy, 7y, Gy with Q.g—0l1 , Mg, Gp , respectively, For A= 0
or %1 = 0, the corresponding displacements again vanish,

For the case of contact between two bodies as shown in Fig, 2, the characteristic equa-
tions for /4 and %; may be obtained in a similar manner from Equations (4, 1) and (4, 2)
by setting &3 = $77 and Qg = ‘%TT . In investigating a homogeneous plate, the equations
for & and %3 are for both cases
him —1)2 — m2kZsin2 o

ne{3m — 4)

The components of the displacement vector for both the first and second case of a

clamped surface are

sin? ket — =40, cos ko =0 {4.3)

u, = Cok[Ly @) (mk — 3m 4 &) cos (k — 1)p - My (@) (mk — 3m + &) sin (k — 1)g —
— Ly} m (k 4 1) cos (& + Do — My (@m (K — 1) sin (k + 1)@}

i, = Cpk [—Ly@) (mk - 3m — &) sin (k — 1)@ -+ M; @) (mk + 3m — 4)cos (b — 1)p-&
Ly fla) m (b =- 1)y sin (b L 1) ¢ — Ay (@) m (K — 1) cos (k 4 1) g]

ug = Dypki cos kg (4.4)

u, = CoF[ Pyl@) (mk — 3m + 4) cos (k — 1)@ ++ Ry (@) (mh — 3m - 4) sin (k — )¢ —
— P (@) (mk — 3 m + 4) cos (k + 1) ¢ — Ry (@) (mk -+ 3m — 4) sin (k -+ 1) ¢]
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u, = CoM[—Py (@) (mk 4 3m — 4y sin (b — 1) 4 Rp () (mk - 3m — %) cos (b — )¢ +
4 Py(@) (mh, — 2m 4 &) sin (k 4- 1)@ — Iy (@) (mk + 3m — 4) cos (K + 1)p]

Here ug = D,p*t sin ko (4.5)
L, (@) = (mk — 2m - 2) sina cos hka - (m — 2) cosa sin ka
My@) = (mk — m 4 2) sinasin ka — 2 (m — 1) cosw cos ka (4.6)

Py (@) = (mk 4 2m — 2) sina cos ka ¢ (m — 2) cosa sin ka
R, (@) = (mk — m - 2) sina sin ka 4- 2 (m — 1) cosa cos ko
Thus, for the cases of mixed boundary conditions examined above, the stresses in the
neighborhood of the edge have singularities of the form p*™* or p™, where % and
/4, are obtained from equations of the form (4, 1) and (4, 2) .,
In conclusion, let us note that the characteristic equations (2, 15), (3. 6) and (4, 3) for
a homogeneous plate coincide with the equations obtained by Ufliand [7] in investigating
the corresponding problems for a plane wedge, This is only natural, for clearly the
method at hand divides the procedure for finding the solution to the posed three-dimen-
sional problem into solving one separate problem for the displacement vector component
u, and another problem for the components z, and «,. the latter being the same
as for a plane wedge, The singularity for the torsion problem could not, of course, be
developed in [7],
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